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ABSTRACT
Tone Mapping Operators (TMOs) transform High Dynamic
Range (HDR) contents to address Low Dynamic Range
(LDR) displays. However, before reaching the end-user,
these contents are usually compressed using a codec (coder-
decoder) for broadcasting or storage purposes. Achieving the
best trade-off between rendering and compression efficiency
is of prime importance. Any TMO includes a rounding quan-
tization to convert floating point values to integer ones. In this
work, we propose to modify this quantization to increase the
compression efficiency of the tone mapped content. By using
a motion compensation, our technique preserves the render-
ing intent of the TMO while maximizing the correlations be-
tween successive frames. Experimental results show that we
can save up to 12% of the total bit-rate as well as an average
bit-rate reduction of 8.5% for all the test sequences. We show
that our technique can be applied to other applications such
as denoising.

Index Terms— HDR Video, Video Tone Mapping, Video
Compression, HEVC, Adaptive Quantization.

1. INTRODUCTION

Tone Mapping Operators (TMOs) transform High Dynamic
Range (HDR) images or video sequences to a lower dynamic
range. Tone mapping still images has been a field of active
research over the last decade and several satisfying solutions
exist [1, 2]. With the recent developments in the HDR video
acquisition field [3], more and more HDR video contents are
available. Consequently, video tone mapping has drawn a lot
of attention recently [4, 5, 6].

These techniques usually focus on the subjective quality
of the tone mapped video contents. However, before reaching
the end-user, these contents need to be compressed using a
codec (coder-decoder) for broadcasting or storage purposes.
By tuning the tone map curve of a TMO, one can increase the
quality of the decoded contents [7, 8].

However, the tone map curve is not the only aspect that
can influence the compression efficiency. Indeed, the last op-
eration performed by a TMO consists in quantizing floating

point values to integer ones. We believe that by making this
quantization temporally coherent a higher compression effi-
ciency can be achieved. To this end, we propose to adapt
the quantization to increase the temporal correlations between
successive frames.

This paper is organized as follows. In section 2, we pro-
vide the necessary background to understand the proposed
technique. Then, we present our method which adapts the
quantization based on a motion estimation/compensation. In
section 4, we compare, in terms of compression efficiency,
our method with a rounding-based quantization. Then we
show how we extend our approach to handle denoising. Be-
fore concluding, we provide a detailed explanation on how
our technique can be improved to achieve an even higher com-
pression efficiency.

2. BACKGROUND

We present in this paper a technique which consists in adapt-
ing the quantization of any TMOs to increase the video com-
pression efficiency. To this end, we first define what we
mean by quantization before presenting tone mapping. Then
we briefly introduce some key aspects of the ITU-T H.265 /
MPEG-H Part 2 ’High Efficiency Video Codec’ (HEVC) [9].

2.1. Quantization

In this paper, the term quantization refers to converting a float-
ing point value to an integer one. When quantizing a value,
one has only three choices: floor (b·c), ceil (d·e) or round
(b·+ 0.5c). This quantization is different from the adaptive
quantization, usually considered in imagery, that consists in
optimizing the distribution of the quantization bins in regard
to an image’s cumulative distributive function [10]. To the
best of our knowledge, no work has been performed on adapt-
ing the quantization (the conversion) to an application.

2.2. Tone Mapping

TMOs convert HDR contents to Low Dynamic Range (LDR)
ones. In HDR imaging, the pixels represent the physical scene



Fig. 1. Workflow of the three steps needed to perform a tone
mapping operation.

luminance (expressed in cd/m2) stored as floating point val-
ues. In the case of LDR imaging, the pixels are assigned code
values corresponding to a color space standard representation,
the most common one being the BT.709.

Fig. 1 illustrates the HDR to LDR conversion. First, the
mapping operation, which is the core of a TMO, compresses
HDR values to fit in the range [0-1]. As there is a multi-
tude of TMOs and their description is not relevant to this
paper, we refer the reader to [1, 2] for further details. Sec-
ondly, the gamma encoding redistributes the tonal level closer
to how our eyes perceive them (usually γ = 1/2.2). Fi-
nally, the quantization step converts floating point values to
integer code values corresponding to the used bit-depth (i.e.
[0; 2n − 1] for n bits). This operation consists in scaling the
gamma encoded values to the maximum value desired (i.e.
2n − 1) and then rounding them to the nearest integer:

I = Q(Iu) = b(2n − 1)Iu + 0.5c (1)

where Q(·) represents the quantization operation, n the used
bit-depth and b·c the rounding to the nearest lower integer.
Iu (respectively I) represents the unquantized (respectively
quantized) gamma encoded image. For the sake of clarity,
scaling by a factor of (2n − 1) will be omitted in the quan-
tization equations. The quantization is performed for each
channel of the image Iu separately, regardless of its represen-
tation, i.e. RGB, YUV etc.

When dealing with video sequences, TMOs apply the de-
scribed operations to each frame separately. As for video
TMOs, they deal with temporal coherency only by modify-
ing the mapping operation [4] or by post-processing Iu [11].

2.3. High Efficiency Video Codec

HEVC is the successor of the ITU-T H.264 / MPEG-4 Part 10
’Advanced Video Coding’ (AVC) codec. Developed by the
Joint Collaborative Team on Video Coding (JCT-VC) group,
it was released in January 2013 and is reported to double AVC
compression ratio. The HEVC test Model (HM) is currently
in its version 12.

HEVC is a block-based codec that exploits both spa-
tial and temporal correlations between the code values of

the pixels to achieve a high compression ratio. To exploit
these correlations, blocks are predicted using two processes.
Intra-prediction relies on spatial correlation to predict the
current block using blocks already decoded in the current
frame. Inter-prediction exploits the temporal correlation by
predicting the current block using blocks from a set of previ-
ous/subsequent decoded frames. The predicted block is then
subtracted from the original block leaving only the residuals
to be encoded.

As this paper focuses on temporal coherency, a detailed
explanation of the inter-prediction is given hereafter. To pre-
dict the current block, a block-based motion estimation is
performed to find the best temporal prediction. It consists
in finding a block that minimizes the distortion with the cur-
rent block to be encoded. An example of distortion metrics is
the Sum of Absolute Differences (SAD) or the Mean Square
Error (MSE). This motion estimation is performed for differ-
ent block-sizes (from 64 to 4 organized in a quad-tree in the
HM). The selected motion vector is the one that minimizes
a rate-distortion function. The inter-prediction results from
performing a motion compensation on a reference frame us-
ing the selected motion vectors.

In video compression, it is generally considered that the
closest the prediction, the more efficient the compression. In
the next section, we present a technique to adapt the quanti-
zation at the tone mapping stage so as to improve a codec’s
inter-prediction.

3. MOTION-GUIDED QUANTIZATION (MGQ)

3.1. Motivations

Before broadcasting it to the end-user, any video content
needs to be encoded using a codec. Tone mapped HDR
video contents cannot skip this process. By optimizing the
tone mapping/compression combination, one could increase
the quality of the rendered contents while reducing the broad-
caster’s bandwidth use. In section 2.2, we mentioned that the
quantization performed by a TMO consists in a rounding to
the nearest integer (Eq. 1). In the meanwhile, we stated that
increasing the quality of a codec’s inter-prediction results in
higher compression ratios (because the resulting residuals are
smaller). From the two above observations, we believe that by
adapting the quantization to the prediction process of a codec,
its compression efficiency can be increased.

To this end, we propose a quantization method that adapts
to any TMO and increases the correlation between succes-
sive frames. With this aim in view, the quantization of the
gamma encoded current frame to be tone mapped (Fu

c , repre-
sented by floating point values) should adapt to the previously
tone mapped frame (Fr which values have been already quan-
tized). Fig. 2 illustrates the tone mapping of two successive
frames of an HDR video sequence with and without using our
technique. The following section details how our technique,



Fig. 2. Tone mapping two consecutive frames with and with-
out applying the MGQ. The range of each input/output as well
as the type of data is indicated (N = uint, R = float).

called Motion-Guided Quantization (MGQ), adapts the quan-
tization.

3.2. Our Approach

Recall that the aim of our technique is to increase the com-
pression efficiency of a tone mapped content by adapting the
quantization operation. As a codec greatly relies on the inter-
prediction to remove redundant data, increasing the quality
of this prediction should provide a higher compression ef-
ficiency. As mentioned in section 2.3, the inter-prediction
relies on a motion estimation/compensation operation to re-
move redundant data between frames of a video sequence.
That is why we first perform a Motion Estimation (ME) be-
tween Fr and Fu

c to obtain, for each pixel location (x, y), a
motion vector (δx, δy). We then compute the Motion Com-
pensation (MC) which provides the inter-predicted frame Fp:

Fp(x, y) = Fr(x+ δx, y + δy) (2)

To be consistent with the prediction process used in HEVC,
the motion estimation is only performed on the luma channel
and the resulting motion vectors are used for each channel of
a YUV frame. Our technique uses the predicted frame Fp to
adapt the quantization of the current frame Fu

c :

FMGQ
c = MGQ(Fu

c ) =

{
bFu

c c if Fu
c − Fp ≥ 0

dFu
c e if Fu

c − Fp < 0
(3)

where MGQ(·) represents the Motion-Guided Quantization
operation while b·c (respectively d·e) represents the rounding
to the nearest lower (respectively higher) integer. Recall that
Fu

c is expressed with floating point values while Fp with in-
teger ones. Both frame’s values range from 0 to 2n− 1. As in
section 2.2, the MGQ is applied to each channel of the frame
Fu

c separately. The workflow of the MGQ technique is illus-
trated in Fig. 3. Our method efficiently increases the quality
of the inter-prediction by reducing the distortion between the
predicted frame Fp and the current frame Fu

c .

Fig. 3. Details on the MGQ. AQ stands for Adaptive Quan-
tization (Eq. 3 or Eq. 4). Fr is the tone mapped reference
frame, Fu

c the tone mapped current frame before quantiza-
tion. The MGQ provides the quantized tone mapped frame
FMGQ

c .

However, with our technique the distortion between Fu
c

and FMCQ
c is always higher than or equal to the rounding

quantization. To tune the trade-off between the quantization
distortion and inter-prediction efficiency, we add a parameter
δ that enables our technique to adapt to the difference between
Fp and Fu

c :

FMGQ
c =

 bF
u
c c if 0 ≤ Fu

c − Fp < δ
dFu

c e if −δ < Fu
c − Fp < 0

bFu
c + 0.5c otherwise

(4)

To better understand the way this trade-off behaves, let us
consider three cases: δ = 0, δ = 1 and δ = ∞. When
δ = 0, the MGQ behaves as a rounding quantization while
for δ = ∞ it corresponds to Eq. 3. For δ = 1, we define Ω
as the set of pixels to which the MGQ has been applied, say
those that satisfy ‖Fp −Fu

c‖ < δ. After applying the quanti-
zation, we obtain FMGQ

c (Ω) = Fp(Ω) since the distortion
was lower than δ (i.e. 1). Consequently, when predicting
FMGQ

c (Ω) using Fp(Ω) the resulting residuals are equal to
0. All the other pixels are quantized using the rounding opera-
tion. Table 1 illustrates different quantizations corresponding
to different pixels conditions. Table 2 summarizes the trade-
off between the distortion to the original unquantized values
Fu

c and that of the predicted values Fp.
To sum up, fixing δ allows the user to balance the number

of pixels quantized using the MGQ or the rounding, based on
the distortion between the unquantized values and the predic-
tion. A higher δ means a higher distortion between FMGQ

c

and Fu
c as well as a higher quality of the prediction Fp,

thereby reducing the amount of residuals to encode.

4. RESULTS

Our technique aims at increasing the compression efficiency
while adapting to any TMO without altering its intent. In this
section, we show that the distortion obtained with our tech-
nique and the rounding quantization are very close. Finally,



Table 1. Example of the different quantization techniques.
Fu

c is the unquatized tone mapped frame, Fp the predicted
frame and Fc

MGQ the current tone mapped frame quantized
using different values of δ (cf. Eq. 4).

Fu
c 7.2 30.2 67.8 130.7 236.3

Fp 8 28 67 127 238

Fu
c − Fp -0.8 2.2 0.8 3.7 -1.7

FMGQ
c , δ = 0 7 30 68 131 236

FMGQ
c , δ = 1 8 30 67 131 236

FMGQ
c , δ =∞ 8 30 67 130 237

Table 2. Sum of distortion resulting from the different quan-
tization of table 1.

‖Fu
c − FMGQ

c ‖ ‖FMGQ
c − Fp‖

FMGQ
c , δ = 0 1.2 10

FMGQ
c , δ = 1 2.4 8

FMGQ
c , δ =∞ 3.2 6

Table 3. PSNR in dB by quantizing with and w/o using our
technique (59 dB correspond to a MSE of 0.081).

Quantization Sun Tunnel Students TunnelHD

Rounding 58.93 58.91 58.92 58.92

MGQ1 56.65 56.74 57.13 56.75

MGQInf 55.68 55.53 56.51 56.15

we report the compression efficiency of tone mapped contents
with and without using our technique.

4.1. Quantization Loss

Integer quantization assigns several floating point values to
the same integer. This process obviously results in a loss of
information in the quantized signal. We assess the loss due to
the quantization by computing the Peak Signal to Noise Ra-
tio (PSNR) between the unquantized current frame Fu

c and
the quantized one Fc. Table 3 reports the PSNR using three
different quantizations: Rounding, MGQ with δ = 1 (noted
MGQ1) and MGQ with δ =∞ (namedMGQInf ). As men-
tioned before, our quantization technique provides a slightly
more distorted sequence than the rounding quantization. This
distortion is no greater than one code value for all the quan-
tized pixels (contrary to the rounding quantization that entails
a maximum distortion of half a code value). For comparison,
the distortion due to a lossy codec is always greater than or
equal to one code value.

Fig. 4. Rate-distortion results for the Sun sequence.

4.2. Compression Efficiency

For our experiments on compression efficiency, we used the
HM 12.0 with the Random Access Main Profile. To assess
the compression efficiency, one usually compares the PSNR
between the input video and its decoded counterpart. This
comparison can be performed in two different ways.

First, each input video is encoded at targeted bit-rates. A
direct comparison of the PSNR allows to assess the increased
quality of the content for these bit-rates. Fig. 4 and 5 plot the
results with and without using the MGQ quantization. The
two sequences used (Sun and Tunnel [12]) are of VGA reso-
lution (640x480) while the targeted bit-rates are 125, 250, 500
and 1000 kbps. We used Ramsey et al. TMO [13] to tone map
both HDR sequences. Results show that we achieve a higher
quality of reconstruction (between 0.15 dB and 0.4 dB gain)
at the decoding stage using the MGQInf . We can also no-
tice that the higher the bit-rate, the higher the gain. The case
MGQ1 provides only a small improvement over the rounding
operation. The trade-off between distortion and compression
efficiency is illustrated through Table 3 and Fig. 4 and 5. Note
that by tuning the δ parameter, one can shift theMGQδ curve
from the Rounding to the MGQInf curve.

The second technique computes the average percentile
bit-rate reduction under the same PSNR. Table 4 reports the
Bjontegaard Distortion rate (BD-rate) [14] for the tested video
sequences. The sequence TunnelHD is of HD resolution
(1920x1080) and has been also tone mapped using Ramsey et
al. TMO [13]. The Students sequence [6] however is of res-
olution 1280x720 and has been tone mapped using Farbman
et al. TMO [15]. The results show that for the same quality,
the MGQInf provides an average bit-rate reduction of 8.5%
for all the test sequences. Note that the two VGA sequences
perform better than the two other ones. This is due to the fact
that these sequences are relatively noisy and our quantization
technique reduces some of the temporal noise. In the next
section, we show that our technique can be extended to other
applications such as denoising.



Fig. 5. Rate-distortion results for the Tunnel sequence.

Table 4. Average percentile bit-rate reduction under the
same PSNR when comparing the Rounding and theMGQInf
quantization techniques. The BD-rate is computed using
piece-wise cubic interpolation.

Sequence Y U V

Sun -12.8% -40.1% -40.6%

Tunnel -10.4% -31.7% -32.7%

Students -5.6% -18.8% -17.5%

TunnelHD -5.4% -21.7% -24.5%

Average -8.5% -28.1% -28.8%

5. DENOISING APPLICATION

As mentioned above, our method performs better for the
Sun and Tunnel sequences because it reduces the temporal
noise. When compression is not the targeted applications,
our method can reduce the noise present in a tone mapped
video sequences. Indeed, in the previous section, the MGQ
was guided by the value of the difference between Fu

c − Fp.
Instead of adapting to the inter-predicted frame Fp, we adapt
our quantization to a denoised frame Fd. The way Fd is com-
puted is not relevant to this paper and any existing denoising
techniques can be used [16]. For our experiments, we will
consider a simple temporal-filtering with motion compensa-
tion:

Fk
d(x, y) =

M∑
l=−N

Fk−l(x− δxk,k−l, y − δyk,k−l)
w(l)

(5)

where (δxk,k−l, δyk,k−l) is a motion vector obtained through
a motion estimation between frames Fk−l and Fk. N (re-
spectively M) represents the number of non-causal (respec-
tively causal) extents of the averaging window and w(l) are
the weights or the filter coefficients. Note that causal frames
are expressed with integer values while non-causal ones with

Table 5. Average PSNR between a denoised version of a tone
mapped video sequence and this sequence quantized either
with a rounding quantization or the MGQ.

Quantization Sun Tunnel Students TunnelHD

Rounding 48.52 45.58 47.78 49.15

MGQInf 49.59 46.56 48.98 50.58

floating point values (including the current one which is in
our case Fu

c ).
For our experiments we used only two frames in the fil-

ter bank: the previous one Fr and the current one Fu
c . We

tested our method on the same set of sequences and TMOs
as in section 4.2. To assess the performance of our method
when compared to the rounding quantization, we compute the
PSNR between the quantized frame (either Fc or FMGQ

c ) and
the desired denoised frame Fd. We report those PSNR in Ta-
ble 5. For all test sequences, we achieve at least 1 dB of
gain using the MGQ technique when compared to the round-
ing technique. The main advantage of using our technique
rather than performing a denoising after the tone mapping re-
sides in the fact that our technique do not introduce additional
artifacts to the sequence. Indeed, denoising usually results
in a smoothing which is source of problems when performed
on edges. However, our technique fails for really noisy se-
quences.

In a more generalized manner, we believe that our method
can adapt to any application where tone mapping is required
provided that the right test value is chosen (e.g. Fp for com-
pression and Fd for denoising).

6. FUTURE WORK

Our method has some limitations, the main one being its com-
putational complexity due to the motion estimation. Further-
more, the proposed implementation is sub-optimum with re-
spect to the prediction process performed in HEVC. Because,
first our technique does not follow the Group Of Pictures
(GOP) hierarchical pattern that is used in a codec. Indeed,
it only uses motion compensation between successive frames.
Second, the intra-prediction process should also benefit from
our quantization. Third, a block-based codec uses a rate-
distortion cost function to select the best predictor for each
block while our solution only relies on a distortion metrics.

To sum up, the MGQ technique, if implemented in the
coding loop instead of being a pre-processing, should pro-
vide an even higher compression efficiency. It would allow
to tune the quantization separately for each of the available
prediction mode. The selected mode and its associated quan-
tization would depend on the codec’s rate-distortion function
rather than solely on the distortion. Regarding the trade-off
parameter δ, it could be linked to the rate-distortion func-



tion to achieve a higher compression efficiency while reduc-
ing the quantization distortion. Furthermore, the computa-
tional complexity would no longer be an issue as the motion
estimation is already performed for the inter-frame predic-
tion. However, to implement our approach inside the coding
loop of a block-based encoder (say HEVC), the computations
within the codec should be performed with floating point val-
ues rather than integer. Finally, addressing more applications
such as color reproduction or tracking should be investigated.

7. CONCLUSION

In this paper, we pointed out that, when performing tone map-
ping, rounding quantization is not efficient. We chose a quan-
tization that aimed at improving the compression efficiency
of tone mapped video contents. Our technique relies on the
motion compensation between two successive frames of a se-
quence to adapt the quantization during the tone mapping.
Results showed an average bit-rate reduction under the same
PSNR ranging from 5.4% to 12.8%. The proposed method
allows a trade-off between compression efficiency and quan-
tization distortion of the original video.

We also applied our technique to denoising to show that
our method can be generalized to deal with any applications
where tone mapping is needed.
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